On Superspecial abelian surfaces over finite fields III

نویسندگان

چکیده

In the paper (J Math Soc Jpn 72(1):303–331, 2020), Tse-Chung Yang and first two current authors computed explicitly number $$|\mathrm {SSp}_2(\mathbb {F}_q)|$$ of isomorphism classes superspecial abelian surfaces over an arbitrary finite field $$\mathbb {F}_q$$ even degree prime {F}_p$$ . There it was assumed that certain commutative {Z}_p$$ -orders satisfy étale condition excludes primes $$p=2, 3, 5$$ We treat these remaining in present paper, where computations are more involved because ramification. This completes calculation case. The odd case previous treated by (Doc 21:1607–1643, 2016). To complete proof our main theorem, we give a classification lattices local quaternion Bass orders, which is new input to works.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jacobians in isogeny classes of abelian surfaces over finite fields

We give a complete answer to the question of which polynomials occur as the characteristic polynomials of Frobenius for genus-2 curves over finite fields.

متن کامل

Principally Polarizable Isogeny Classes of Abelian Surfaces over Finite Fields

Let A be an isogeny class of abelian surfaces over Fq with Weil polynomial x4+ax3+bx2+aqx+q2. We show that A does not contain a surface that has a principal polarization if and only if a2 − b = q and b < 0 and all prime divisors of b are congruent to 1 modulo 3.

متن کامل

Abelian varieties over finite fields

A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...

متن کامل

Endomorphisms of Abelian Varieties over Finite Fields

Almost all of the general facts about abelian varieties which we use without comment or refer to as "well known" are due to WEIL, and the references for them are [12] and [3]. Let k be a field, k its algebraic closure, and A an abelian variety defined over k, of dimension g. For each integer m > 1, let A m denote the group of elements aeA(k) such that ma=O. Let l be a prime number different fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in number theory

سال: 2021

ISSN: ['2363-9555', '2522-0160']

DOI: https://doi.org/10.1007/s40993-021-00303-8